Solutions to $H$-systems by topological and iterative methods
Amster, P. ; Mariani, M. C.
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 539-545 / Harvested from Project Euclid
We study $H$ -systems with a Dirichlet boundary data $g$ . Under some conditions, we show that if the problem admits a solution for some $(H_{0},g_{0})$ , then it can be solved for any $(H,g)$ close enough to $(H_{0},g_{0})$ . Moreover, we construct a solution of the problem applying a Newton iteration.
Publié le : 2003-05-14
Classification:  35J65,  35J60
@article{1053348485,
     author = {Amster, P. and Mariani, M. C.},
     title = {Solutions to $H$-systems by topological and iterative methods},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 539-545},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1053348485}
}
Amster, P.; Mariani, M. C. Solutions to $H$-systems by topological and iterative methods. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  539-545. http://gdmltest.u-ga.fr/item/1053348485/