Decomposition and infima in the computably enumerable degrees
Downey, Rodney G. ; LaForte, Geoffrey L. ; Shore, Richard A.
J. Symbolic Logic, Tome 68 (2003) no. 1, p. 551- 579 / Harvested from Project Euclid
Given two incomparable c.e. Turing degrees a and b, we show that there exists a c.e. degree c such that c =(a \cup c) \cap (b\cupc), a \cup c | b \cup c, and c a \cup b.
Publié le : 2003-06-14
Classification: 
@article{1052669063,
     author = {Downey, Rodney G. and LaForte, Geoffrey L. and Shore, Richard A.},
     title = {Decomposition and infima in the computably enumerable degrees},
     journal = {J. Symbolic Logic},
     volume = {68},
     number = {1},
     year = {2003},
     pages = { 551- 579},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1052669063}
}
Downey, Rodney G.; LaForte, Geoffrey L.; Shore, Richard A. Decomposition and infima in the computably enumerable degrees. J. Symbolic Logic, Tome 68 (2003) no. 1, pp.  551- 579. http://gdmltest.u-ga.fr/item/1052669063/