The theory of Liouville functions
Koiran, Pascal
J. Symbolic Logic, Tome 68 (2003) no. 1, p. 353- 365 / Harvested from Project Euclid
A Liouville function is an analytic function $H: \C \rightarrow \C$ with a Taylor series $\sumn=1\infty xn/an$ such the an’s form a “very fast growing” sequence of integers. In this paper we exhibit the complete first-order theory of the complex field expanded with H.
Publié le : 2003-06-14
Classification: 
@article{1052669055,
     author = {Koiran, Pascal},
     title = {The theory of Liouville functions},
     journal = {J. Symbolic Logic},
     volume = {68},
     number = {1},
     year = {2003},
     pages = { 353- 365},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1052669055}
}
Koiran, Pascal. The theory of Liouville functions. J. Symbolic Logic, Tome 68 (2003) no. 1, pp.  353- 365. http://gdmltest.u-ga.fr/item/1052669055/