@article{105229, author = {Christopher J. Duckenfield}, title = {A continuous geometry as a mathematical model for quantum mechanics}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {010}, year = {1969}, pages = {217-236}, zbl = {0208.27702}, mrnumber = {0250573}, language = {en}, url = {http://dml.mathdoc.fr/item/105229} }
Duckenfield, Christopher J. A continuous geometry as a mathematical model for quantum mechanics. Commentationes Mathematicae Universitatis Carolinae, Tome 010 (1969) pp. 217-236. http://gdmltest.u-ga.fr/item/105229/
Mathematical Foundations of Quantum Mechanics, Benjamin, 1961. (1961)
Any orthocomplemented complete modular lattice is a continuous geometry, Ann. Math., 1955, 61, 524-541. (1955) | MR 0088476 | Zbl 0065.01801
Eigenvalues in continuous rings, submitted to Acta sci. math.
Continuous geometry, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 92-100. (1936) | Zbl 0014.22307
Examples of continuous geometries, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 101-108. (1936) | Zbl 0014.22308
On regular rings, Proc. Nat. Acad. Sci., U. S. A., 22 (1936), 707-713. (1936) | Zbl 0015.38802
Algebraic theories of continuous geometries, Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 16-22. (1937)
Continuous rings and their arithmetics, Proc. Nat. Acad. Sci., U. S. A., 23 (1937), 341-349. (1937) | Zbl 0017.14804
Continuous Geometry, Princeton 1960. (1960) | MR 0120174 | Zbl 0171.28003
Complemented Modular Lattices and Regular Rings, Oliver and Boyd, 1964. (1964) | MR 0169799 | Zbl 0156.04101
Measure Theory, Van Nostrand, 1962. (1962) | MR 0033869
Kontinuierliche Geometrien, Sp. - Verlag, 1958. (1958) | MR 0090579