Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory
Sichler, Jiří
Commentationes Mathematicae Universitatis Carolinae, Tome 009 (1968), p. 627-635 / Harvested from Czech Digital Mathematics Library
Publié le : 1968-01-01
Classification:  08-30,  08Axx,  18-00
@article{105205,
     author = {Ji\v r\'\i\ Sichler},
     title = {Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {009},
     year = {1968},
     pages = {627-635},
     zbl = {0204.33301},
     mrnumber = {0252305},
     language = {en},
     url = {http://dml.mathdoc.fr/item/105205}
}
Sichler, Jiří. Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory. Commentationes Mathematicae Universitatis Carolinae, Tome 009 (1968) pp. 627-635. http://gdmltest.u-ga.fr/item/105205/

Z. Hedrlín J. Lambek How comprehensive is the category of semigroups, to appear in J. of Algebra. | MR 0237611

Z. Hedrlín A. Pultr On full embeddings of categories of algebras, Ill. J. of Math. 10 (1966), 392-406. (1966) | MR 0191858

A. Pultr Eine Bemerkung über volle Einbettungen von Kategorien von Algebren, Math. Ann. 178 (1968), 78-82. (1968) | MR 0230794 | Zbl 0174.30002

A. Pultr J. Sichler Primitive classes of algebras with two unary idempdent operations, containing all algebraic categories as full subcategories, to appear. | MR 0253969

J. Sichler Category of commutative groupoids is binding, Comment. Math. Univ. Carolinae 8, 4 (1967), 753-755. (1967) | MR 0228400 | Zbl 0168.26703

J. Sichler ${\germ A}(1,1)$ can be strongly embedded into category of semigroups, Comment. Math. Univ. Carolinae 9, 2 (1968), 257-262. (1968) | MR 0237395

V. Trnková Strong embeddings of category of all groupoids into category of semigroups, Comment. Math. Univ. Carolinae 9, 2 (1968), 251-256. (1968) | MR 0237394