@article{105205, author = {Ji\v r\'\i\ Sichler}, title = {Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {009}, year = {1968}, pages = {627-635}, zbl = {0204.33301}, mrnumber = {0252305}, language = {en}, url = {http://dml.mathdoc.fr/item/105205} }
Sichler, Jiří. Concerning minimal primitive classes of algebras containing any category of algebras as a full subcategory. Commentationes Mathematicae Universitatis Carolinae, Tome 009 (1968) pp. 627-635. http://gdmltest.u-ga.fr/item/105205/
How comprehensive is the category of semigroups, to appear in J. of Algebra. | MR 0237611
On full embeddings of categories of algebras, Ill. J. of Math. 10 (1966), 392-406. (1966) | MR 0191858
Eine Bemerkung über volle Einbettungen von Kategorien von Algebren, Math. Ann. 178 (1968), 78-82. (1968) | MR 0230794 | Zbl 0174.30002
Primitive classes of algebras with two unary idempdent operations, containing all algebraic categories as full subcategories, to appear. | MR 0253969
Category of commutative groupoids is binding, Comment. Math. Univ. Carolinae 8, 4 (1967), 753-755. (1967) | MR 0228400 | Zbl 0168.26703
${\germ A}(1,1)$ can be strongly embedded into category of semigroups, Comment. Math. Univ. Carolinae 9, 2 (1968), 257-262. (1968) | MR 0237395
Strong embeddings of category of all groupoids into category of semigroups, Comment. Math. Univ. Carolinae 9, 2 (1968), 251-256. (1968) | MR 0237394