Some questions on quasinilpotent groups and related classes
Iranzo, María Jesús ; Medina, Juan ; Pérez-Monasor, Francisco
Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, p. 747-759 / Harvested from Project Euclid
In this paper we will prove that if $G$ is a finite group, $X$ a subnormal subgroup of $ X F^*(G)$ such that $X F^*(G)$ is quasinilpotent and $Y$ is a quasinilpotent subgroup of $N_G(X)$, then $Y F^*(N_G(X})$ is quasinilpotent if and only if $Y F^*(G)$ is quasinilpotent. Also we will obtain that $F^*{G}$ controls its own fusion in $G$ if and only if $G=F^*{G}$.
Publié le : 2002-03-14
Classification:  Nilpotent group,  quasinilpotent group,  injector,  fusion,  20D10,  20F19
@article{1051544326,
     author = {Iranzo, Mar\'\i a Jes\'us and Medina, Juan and P\'erez-Monasor, Francisco},
     title = {Some questions on quasinilpotent groups and related classes},
     journal = {Rev. Mat. Iberoamericana},
     volume = {18},
     number = {1},
     year = {2002},
     pages = { 747-759},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1051544326}
}
Iranzo, María Jesús; Medina, Juan; Pérez-Monasor, Francisco. Some questions on quasinilpotent groups and related classes. Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, pp.  747-759. http://gdmltest.u-ga.fr/item/1051544326/