Global existence for the discrete diffusive coagulation-fragmentation equations in $L^1$
Laurençot, Philippe ; Mischler, Stéphane
Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, p. 731-745 / Harvested from Project Euclid
Existence of global weak solutions to the discrete coagulation-fragmentation equations with diffusion is proved under general assumptions on the coagulation and fragmentation coefficients. Unlike previous works requiring $L^\infty$-estimates, an $L^1$-approach is developed here which relies on weak and strong compactness methods in $L^1$.
Publié le : 2002-03-14
Classification:  Cluster growth,  coalescence,  breakage,  infinite system of reaction-diffusion equations,  existence,  weak compactness,  35K50,  35K57,  82D60
@article{1051544325,
     author = {Lauren\c cot, Philippe and Mischler, St\'ephane},
     title = {Global existence for the discrete diffusive coagulation-fragmentation equations 
in $L^1$},
     journal = {Rev. Mat. Iberoamericana},
     volume = {18},
     number = {1},
     year = {2002},
     pages = { 731-745},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1051544325}
}
Laurençot, Philippe; Mischler, Stéphane. Global existence for the discrete diffusive coagulation-fragmentation equations 
in $L^1$. Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, pp.  731-745. http://gdmltest.u-ga.fr/item/1051544325/