Lebesgue points for Sobolev functions on metric spaces
Kinnunen, Juha ; Latvala, Visa
Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, p. 685-700 / Harvested from Project Euclid
Our main objective is to study the pointwise behaviour of Sobolev functions on a metric measure space. We prove that a Sobolev function has Lebesgue points outside a set of capacity zero if the measure is doubling. This result seems to be new even for the weighted Sobolev spaces on Euclidean spaces. The crucial ingredient of our argument is a maximal function related to discrete convolution approximations. In particular, we do not use the Besicovitch covering theorem, extension theorems or representation formulas for Sobolev functions.
Publié le : 2002-03-14
Classification:  Sobolev spaces,  spaces of homogeneous type,  doubling measures,  capacity,  regularity,  maximal functions,  46E35
@article{1051544323,
     author = {Kinnunen, Juha and Latvala, Visa},
     title = {Lebesgue points for Sobolev functions on metric spaces},
     journal = {Rev. Mat. Iberoamericana},
     volume = {18},
     number = {1},
     year = {2002},
     pages = { 685-700},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1051544323}
}
Kinnunen, Juha; Latvala, Visa. Lebesgue points for Sobolev functions on metric spaces. Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, pp.  685-700. http://gdmltest.u-ga.fr/item/1051544323/