Nevanlinna theory, fuchsian functions and brownian motion windings
Gruet, Jean-Claude
Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, p. 301-324 / Harvested from Project Euclid
Atsuji proposed some integrals along Brownian paths to study the Nevanlinna characteristic function $T(f,r)$ when $f$ is meromorphic in the unit disk $D$. We show that his criterion does not apply to the basic case when $f$ is a modular elliptic function. The divergence of similar integrals computed along the geodesic flow is also proved.
Publié le : 2002-03-14
Classification:  Nevanlinna theory,  meromorphic functions,  Brownian motion,  geodesic flow,  60J65,  30D35,  30F45
@article{1051544239,
     author = {Gruet, Jean-Claude},
     title = {Nevanlinna theory, fuchsian functions and brownian motion windings},
     journal = {Rev. Mat. Iberoamericana},
     volume = {18},
     number = {1},
     year = {2002},
     pages = { 301-324},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1051544239}
}
Gruet, Jean-Claude. Nevanlinna theory, fuchsian functions and brownian motion windings. Rev. Mat. Iberoamericana, Tome 18 (2002) no. 1, pp.  301-324. http://gdmltest.u-ga.fr/item/1051544239/