Relaxation time of anisotropic simple exclusion processes and quantum Heisenberg models
Caputo, Pietro ; Martinelli, Fabio
Ann. Appl. Probab., Tome 13 (2003) no. 1, p. 691-721 / Harvested from Project Euclid
Motivated by an exact mapping between anisotropic half integer spin quantum Heisenberg models and asymmetric diffusions on the lattice, we consider an anisotropic simple exclusion process with $N$ particles in a rectangle of $\bbZ^2$. Every particle at row $h$ tries to jump to an arbitrary empty site at row $h\pm 1$ with rate $q^{+ 1}$, where $q\in (0,1)$ is a measure of the drift driving the particles toward the bottom of the rectangle. We prove that the spectral gap of the generator is uniformly positive in $N$ and in the size of the rectangle. The proof is inspired by a recent interesting technique envisioned by E. Carlen, M. C. Carvalho and M. Loss to analyze the Kac model for the nonlinear Boltzmann equation. We then apply the result to prove precise upper and lower bounds on the energy gap for the spin-$S$, $S\in \ov2\bbN$, $\mbox{\textit{{XXZ}}}$ chain and for the 111 interface of the spin-$S$ $\mbox{\textit{{XXZ}}}$\vspace{-1pt} Heisenberg model, thus generalizing previous results valid only for spin $\ov2$.
Publié le : 2003-05-14
Classification:  Asymmetric simple exclusion,  diffusion limited chemical reactions,  spectral gap,  $XXZ$ model,  equivalence of ensembles,  60K40,  60K35,  60J27,  82B10,  82B20
@article{1050689600,
     author = {Caputo, Pietro and Martinelli, Fabio},
     title = {Relaxation time of anisotropic simple exclusion processes and quantum Heisenberg models},
     journal = {Ann. Appl. Probab.},
     volume = {13},
     number = {1},
     year = {2003},
     pages = { 691-721},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050689600}
}
Caputo, Pietro; Martinelli, Fabio. Relaxation time of anisotropic simple exclusion processes and quantum Heisenberg models. Ann. Appl. Probab., Tome 13 (2003) no. 1, pp.  691-721. http://gdmltest.u-ga.fr/item/1050689600/