Harmonic moments and large deviation rates for supercritical branching processes
Ney, P. E. ; Vidyashankar, A. N.
Ann. Appl. Probab., Tome 13 (2003) no. 1, p. 475-489 / Harvested from Project Euclid
Let $ \{Z_{n}, n \ge 1 \}$ be a single type supercritical Galton--Watson process with mean $EZ_{1} \equiv m$, initiated by a single ancestor. This paper studies the large deviation behavior of the sequence $\{R_n \equiv \frac{Z_{n+1}}{Z_n}\dvtx n \ge 1 \}$ and establishes a "phase transition" in rates depending on whether $r$, the maximal number of moments possessed by the offspring distribution, is less than, equal to or greater than the Schröder constant $\alpha$. This is done via a careful analysis of the harmonic moments of $Z_n$.
Publié le : 2003-05-14
Classification:  Branching processes,  harmonic moments,  large deviations,  60J80,  60F10
@article{1050689589,
     author = {Ney, P. E. and Vidyashankar, A. N.},
     title = {Harmonic moments and large deviation rates for supercritical branching processes},
     journal = {Ann. Appl. Probab.},
     volume = {13},
     number = {1},
     year = {2003},
     pages = { 475-489},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050689589}
}
Ney, P. E.; Vidyashankar, A. N. Harmonic moments and large deviation rates for supercritical branching processes. Ann. Appl. Probab., Tome 13 (2003) no. 1, pp.  475-489. http://gdmltest.u-ga.fr/item/1050689589/