A remark on the approximate fixed-point property
Kuczumow, Tadeusz
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 93-99 / Harvested from Project Euclid
We give an example of an unbounded, convex, and closed set $C$ in the Hilbert space $l^2$ with the following two properties: (i) $C$ has the approximate fixed-point property for nonexpansive mappings, (ii) $C$ is not contained in a block for every orthogonal basis in $l^2$ .
Publié le : 2003-01-30
Classification:  47H09,  47H10
@article{1050426054,
     author = {Kuczumow, Tadeusz},
     title = {A remark on the approximate fixed-point
 property},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 93-99},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050426054}
}
Kuczumow, Tadeusz. A remark on the approximate fixed-point
 property. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  93-99. http://gdmltest.u-ga.fr/item/1050426054/