A weak ergodic theorem for infinite products of Lipschitzian mappings
Reich, Simeon ; Zaslavski, Alexander J.
Abstr. Appl. Anal., Tome 2003 (2003) no. 7, p. 67-74 / Harvested from Project Euclid
Let $K$ be a bounded, closed, and convex subset of a Banach space. For a Lipschitzian self-mapping $A$ of $K$ , we denote by $\mathrm{Lip}(A)$ its Lipschitz constant. In this paper, we establish a convergence property of infinite products of Lipschitzian self-mappings of $K$ . We consider the set of all sequences $\{A_t\}_{t=1}^{\infty}$ of such self-mappings with the property $\mathrm{limsup}_{t \rightarrow \infty} \mathrm{Lip}(A_t) \le 1$ . Endowing it with an appropriate topology, we establish a weak ergodic theorem for the infinite products corresponding to generic sequences in this space.
Publié le : 2003-01-30
Classification:  37L99,  47H09,  54E50,  54E52
@article{1050426051,
     author = {Reich, Simeon and Zaslavski, Alexander J.},
     title = {A weak ergodic theorem for infinite products of Lipschitzian
mappings},
     journal = {Abstr. Appl. Anal.},
     volume = {2003},
     number = {7},
     year = {2003},
     pages = { 67-74},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050426051}
}
Reich, Simeon; Zaslavski, Alexander J. A weak ergodic theorem for infinite products of Lipschitzian
mappings. Abstr. Appl. Anal., Tome 2003 (2003) no. 7, pp.  67-74. http://gdmltest.u-ga.fr/item/1050426051/