Existence of a positive solution for an $n$th order boundary value problem for nonlinear difference equations
Henderson, Johnny ; Lauer, Susan D.
Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, p. 271-279 / Harvested from Project Euclid
The $n$ th order eigenvalue problem: $$\Delta^n x(t)=(-1)^{n-k}\lambda f(t,x(t)),t\in[0,T],x(0)=x(1)=\cdots=x(k-1)=x(T+k+1)=\cdots=x(T+n)=0,$ is considered, where $n\ge 2$ and $k\in\{1,2,\ldots,n-1\}$ are given. Eigenvalues $\lambda$ are determined for $f$ continuous and the case where the limits $f_0(t)=\lim\limits_{n\to 0^+}\frac{f(t,u)}{u}$ and $f_\infty(t)=\lim\limits_{n\to\infty}\frac{f(t,u)}{u}$ exist for all $t\in[0,T]$ . Guo′s fixed point theorem is applied to operators defined on annular regions in a cone.
Publié le : 1997-05-14
Classification:  $n$th order difference equation,  eigenvalue,  boundary value problem,  fixed point theorem,  discrete,  nonlinear,  Green′s function,  39A10,  34B15
@article{1050355238,
     author = {Henderson, Johnny and Lauer, Susan D.},
     title = {Existence of a positive solution for an $n$th order boundary value problem for nonlinear difference equations},
     journal = {Abstr. Appl. Anal.},
     volume = {2},
     number = {1-2},
     year = {1997},
     pages = { 271-279},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050355238}
}
Henderson, Johnny; Lauer, Susan D. Existence of a positive solution for an $n$th order boundary value problem for nonlinear difference equations. Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, pp.  271-279. http://gdmltest.u-ga.fr/item/1050355238/