A result on the bifurcation from the principal eigenvalue of the $A_p$-Laplacian
Drábek, P. ; Elkhalil, A. ; Touzani, A.
Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, p. 185-195 / Harvested from Project Euclid
We study the following bifurcation problem in any bounded domain $\Omega$ in $\mathbb{R}^N$ : $$\begin{cases}A_pu := -\sum^N_{i,j=1}\frac{\partial}{\partial x_i}[(\sum^N_{m,k=1}a_{mk}(x)\frac{\partial u}{\partial x_m}\frac{\partial u}{\partial x_k})^{\frac{p-2}{2}}a_{ij}(x)\frac{\partial u}{\partial x_j}]=\lambda g(x)|u|^{p-2}u + f(x,u,\lambda),u\in W_0^{1,p}(\Omega)\end{cases}$$ . We prove that the principal eigenvalue $\lambda_1$ of the eigenvalue problem $$\begin{cases}A_pu =\lambda g(x)|u|^{p-2}u,u\in W_0^{1,p}(\Omega),\end{cases}$$ is a bifurcation point of the problem mentioned above.
Publié le : 1997-05-14
Classification:  $A_p$-Laplacian,  indefinite weight,  the first eigenvalue,  bifurcation problem,  35B32,  35J70,  35P30
@article{1050355232,
     author = {Dr\'abek, P. and Elkhalil, A. and Touzani, A.},
     title = {A result on the bifurcation from the principal eigenvalue of the
$A\_p$-Laplacian},
     journal = {Abstr. Appl. Anal.},
     volume = {2},
     number = {1-2},
     year = {1997},
     pages = { 185-195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050355232}
}
Drábek, P.; Elkhalil, A.; Touzani, A. A result on the bifurcation from the principal eigenvalue of the
$A_p$-Laplacian. Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, pp.  185-195. http://gdmltest.u-ga.fr/item/1050355232/