Existence problems for homoclinic solutions
Avramescu, Cezar
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 1-27 / Harvested from Project Euclid
The problem $\dot{x} = f(t,x),x(-\infty)= x(+\infty)$ , where $x(\pm\infty):=\lim_{t\rightarrow\pm\infty}x(t) \in\mathbb{R}^{n}$ , is considered. Some existence results for this problem are established using the fixed point method and topological degree theory.
Publié le : 2002-05-14
Classification:  34B40,  37C29,  47H11
@article{1050348523,
     author = {Avramescu, Cezar},
     title = {Existence problems for homoclinic solutions},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 1-27},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348523}
}
Avramescu, Cezar. Existence problems for homoclinic solutions. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  1-27. http://gdmltest.u-ga.fr/item/1050348523/