Generic uniqueness of a minimal solution for variational problems on a torus
Zaslavski, Alexander J.
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 143-154 / Harvested from Project Euclid
We study minimal solutions for one-dimensional variational problems on a torus. We show that, for a generic integrand and any rational number $\alpha$ , there exists a unique (up to translations) periodic minimal solution with rotation number $\alpha$ .
Publié le : 2002-05-14
Classification:  49J99,  58F99
@article{1050348482,
     author = {Zaslavski, Alexander J.},
     title = {Generic uniqueness of a minimal solution for variational problems on a torus},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 143-154},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348482}
}
Zaslavski, Alexander J. Generic uniqueness of a minimal solution for variational problems on a torus. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  143-154. http://gdmltest.u-ga.fr/item/1050348482/