On the curvature of nonregular saddle surfaces in the hyperbolic and spherical three-space
Kalikakis, Dimitrios E.
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 113-123 / Harvested from Project Euclid
This paper proves that any nonregular nonparametric saddle surface in a three-dimensional space of nonzero constant curvature $\kappa$ , which is bounded by a rectifiable curve, is a space of curvature not greater than $\kappa$ in the sense of Aleksandrov. This generalizes a classical theorem by Shefel′ on saddle surfaces in $\mathbb{E}^3$ .
Publié le : 2002-05-14
Classification:  53C45,  53A35,  52B70
@article{1050348479,
     author = {Kalikakis, Dimitrios E.},
     title = {On the curvature of nonregular saddle surfaces in the hyperbolic and 
			spherical three-space},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 113-123},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348479}
}
Kalikakis, Dimitrios E. On the curvature of nonregular saddle surfaces in the hyperbolic and 
			spherical three-space. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  113-123. http://gdmltest.u-ga.fr/item/1050348479/