Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition
Martínez, Sandra ; Rossi, Julio D.
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 287-293 / Harvested from Project Euclid
We prove the simplicity and isolation of the first eigenvalue for the problem $\Delta_p u = |u|^{p-2}u$ in a bounded smooth domain $\Omega\subset\mathbb{R}^N$ , with a nonlinear boundary condition given by $|\nabla u|^{p-2}\partial u/\partial\nu =\lambda|u|^{p-2} u$ on the boundary of the domain.
Publié le : 2002-05-14
Classification:  35P05,  35J60,  35J25
@article{1050348439,
     author = {Mart\'\i nez, Sandra and Rossi, Julio D.},
     title = {Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 287-293},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348439}
}
Martínez, Sandra; Rossi, Julio D. Isolation and simplicity for the first eigenvalue of the $p$-Laplacian with a nonlinear boundary condition. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  287-293. http://gdmltest.u-ga.fr/item/1050348439/