An inverse problem for a nonlinear Schrödinger equation
Ton, Bui An
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 385-399 / Harvested from Project Euclid
We study the dependence on the control $q$ of the interval of definition of the solution $u$ of the Cauchy problem $\imath u^{\prime}+\Delta u = -\lambda|u|^{2}u -\imath q u$ in $\mathbb{R}^{2}\times(0,T),u(x,0)=\omega$ in $\mathbb{R}^2$ , and we prove a version of Fibich′s conjecture. Feedback laws for an inverse problem of the above equation with experimental data, measured on a portion of the boundary of an open, bounded subset of $\mathbb{R}^2$ are established.
Publié le : 2002-05-14
Classification:  35L05,  49J20,  49N45
@article{1050348399,
     author = {Ton, Bui An},
     title = {An inverse problem for a nonlinear Schr\"odinger
equation},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 385-399},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348399}
}
Ton, Bui An. An inverse problem for a nonlinear Schrödinger
equation. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  385-399. http://gdmltest.u-ga.fr/item/1050348399/