Positive solutions of higher order quasilinear elliptic equations
Montenegro, Marcelo
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 423-452 / Harvested from Project Euclid
The higher order quasilinear elliptic equation $-\Delta(\Delta_{p}(\Delta u))= f(x,u)$ subject to Dirichlet boundary conditions may have unique and regular positive solution. If the domain is a ball, we obtain a priori estimate to the radial solutions via blowup. Extensions to systems and general domains are also presented. The basic ingredients are the maximum principle, Moser iterative scheme, an eigenvalue problem, a priori estimates by rescalings, sub/supersolutions, and Krasnosel′skiĭ fixed point theorem.
Publié le : 2002-05-14
Classification:  35J55,  35A05,  35J60
@article{1050348373,
     author = {Montenegro, Marcelo},
     title = {Positive solutions of higher order quasilinear elliptic equations},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 423-452},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348373}
}
Montenegro, Marcelo. Positive solutions of higher order quasilinear elliptic equations. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  423-452. http://gdmltest.u-ga.fr/item/1050348373/