On principal eigenvalues for periodic parabolic Steklov problems
Godoy, T. ; Dozo, E. Lami ; Paczka, S.
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 401-421 / Harvested from Project Euclid
Let $\Omega$ be a $C^{2+\gamma}$ domain in $\mathbb{R}^N$ , $N\geq 2$ , $0 < \gamma < 1$ . Let $T > 0$ and let $L$ be a uniformly parabolic operator $Lu ={\partial u}/{\partial t}-\sum_{i,j}({\partial}/{\partial x_{i}})(a_{ij}({\partial u}/{\partial x_{j}})) +\sum_{j}b_{j}({\partial u}/{\partial x_{i}})+ a_{0}u$ , $a_{0}\geq 0$ , whose coefficients, depending on $(x,t)\in\Omega \times\mathbb{R}$ , are $T$ periodic in $t$ and satisfy some regularity assumptions. Let $A$ be the $N \times N$ matrix whose $i,j$ entry is $a_{ij}$ and let $\nu$ be the unit exterior normal to $\partial\Omega$ . Let $m$ be a $T$ -periodic function (that may change sign) defined on $\partial\Omega$ whose restriction to $\partial\Omega \times\mathbb{R}$ belongs to $W_{q}^{2-{1}/{q},1 -{1}/{2q}}(\partial\Omega \times(0,T))$ for some large enough $q$ . In this paper, we give necessary and sufficient conditions on $m$ for the existence of principal eigenvalues for the periodic parabolic Steklov problem $Lu = 0$ on $\Omega \times\mathbb{R}$ , $\langle A\nabla u,\nu\rangle =\lambda mu$ on $\partial\Omega \times\mathbb{R}$ , u( x,t) =u(x,t+T) , u>0 on $\Omega \times\mathbb{R}$ . Uniqueness and simplicity of the positive principal eigenvalue is proved and a related maximum principle is given.
Publié le : 2002-05-14
Classification:  35K20,  35P05,  35B10,  35B50
@article{1050348372,
     author = {Godoy, T. and Dozo, E. Lami and Paczka, S.},
     title = {On principal eigenvalues for periodic parabolic Steklov problems},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 401-421},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348372}
}
Godoy, T.; Dozo, E. Lami; Paczka, S. On principal eigenvalues for periodic parabolic Steklov problems. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  401-421. http://gdmltest.u-ga.fr/item/1050348372/