On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth
Souto, Marco A. S.
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 547-561 / Harvested from Project Euclid
We study the location of the peaks of solution for the critical growth problem $-\varepsilon^{2}\Delta u + u = f(u) + u^{2^{*}-1}$ , $u > 0$ in $\Omega$ , $u = 0$ on $\partial\Omega$ , where $\Omega$ is a bounded domain; $2^{*} = {2N}/({N-2})$ , $N\geq 3$ , is the critical Sobolev exponent and $f$ has a behavior like $u^p$ , $1 < p < 2^{*}-1$ .
Publié le : 2002-05-14
Classification:  35A05,  35A15,  35J20
@article{1050348334,
     author = {Souto, Marco A. S.},
     title = {On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 547-561},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348334}
}
Souto, Marco A. S. On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  547-561. http://gdmltest.u-ga.fr/item/1050348334/