On the notion of $L^1$-completeness of a stochastic flow on a manifold
Gliklikh, Yu. E. ; Morozova, L. A.
Abstr. Appl. Anal., Tome 7 (2002) no. 12, p. 627-635 / Harvested from Project Euclid
We introduce the notion of $L^1$ -completeness for a stochastic flow on manifold and prove a necessary and sufficient condition for a flow to be $L^1$ -complete. $L^1$ -completeness means that the flow is complete (i.e., exists on the given time interval) and that it belongs to some sort of $L^1$ -functional space, natural for manifolds where no Riemannian metric is specified.
Publié le : 2002-05-14
Classification:  58J65,  58J35,  60H10
@article{1050348280,
     author = {Gliklikh, Yu. E. and Morozova, L. A.},
     title = {On the notion of $L^1$-completeness of a stochastic flow on a manifold},
     journal = {Abstr. Appl. Anal.},
     volume = {7},
     number = {12},
     year = {2002},
     pages = { 627-635},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050348280}
}
Gliklikh, Yu. E.; Morozova, L. A. On the notion of $L^1$-completeness of a stochastic flow on a manifold. Abstr. Appl. Anal., Tome 7 (2002) no. 12, pp.  627-635. http://gdmltest.u-ga.fr/item/1050348280/