Obstacles to bounded recovery
Shekhtman, Boris
Abstr. Appl. Anal., Tome 6 (2001) no. 1, p. 381-400 / Harvested from Project Euclid
Let $X$ be a Banach space, $V\subset X$ is its subspace and $U\subset X^*$ . Given $x\in X$ , we are looking for $v\in V$ such that $u(v)= u(x)$ for all $u\in U$ and $\|v\|\leq M\|x\|$ . In this article, we study the restrictions placed on the constant $M$ as a function of $X,V$ , and $U$ .
Publié le : 2001-05-14
Classification:  41A35,  46A32
@article{1050266949,
     author = {Shekhtman, Boris},
     title = {Obstacles to bounded recovery},
     journal = {Abstr. Appl. Anal.},
     volume = {6},
     number = {1},
     year = {2001},
     pages = { 381-400},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050266949}
}
Shekhtman, Boris. Obstacles to bounded recovery. Abstr. Appl. Anal., Tome 6 (2001) no. 1, pp.  381-400. http://gdmltest.u-ga.fr/item/1050266949/