$(r,p)$-absolutely summing operators on the space $C(T,X)$ and applications
Popa, Dumitru
Abstr. Appl. Anal., Tome 6 (2001) no. 1, p. 309-315 / Harvested from Project Euclid
We give necessary and sufficient conditions for an operator on the space $C(T,X)$ to be $(r,p)$ -absolutely summing. Also we prove that the injective tensor product of an integral operator and an $(r,p)$ -absolutely summing operator is an $(r,p)$ -absolutely summing operator.
Publié le : 2001-05-14
Classification:  46A32,  46B28,  46E15,  46M05,  47A80,  47B10,  47B38
@article{1050266867,
     author = {Popa, Dumitru},
     title = {$(r,p)$-absolutely summing operators on the space $C(T,X)$
and applications},
     journal = {Abstr. Appl. Anal.},
     volume = {6},
     number = {1},
     year = {2001},
     pages = { 309-315},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050266867}
}
Popa, Dumitru. $(r,p)$-absolutely summing operators on the space $C(T,X)$
and applications. Abstr. Appl. Anal., Tome 6 (2001) no. 1, pp.  309-315. http://gdmltest.u-ga.fr/item/1050266867/