A note on the difference schemes for hyperbolic equations
Ashyralyev, A. ; Sobolevskii, P. E.
Abstr. Appl. Anal., Tome 6 (2001) no. 1, p. 63-70 / Harvested from Project Euclid
The initial value problem for hyperbolic equations $d^2u(t)/dt^2 + Au(t) = f(t)(0\leq t\leq 1),u(0)=\varphi,u'(0)=\psi$ , in a Hilbert space $H$ is considered. The first and second order accuracy difference schemes generated by the integer power of $A$ approximately solving this initial value problem are presented. The stability estimates for the solution of these difference schemes are obtained.
Publié le : 2001-05-14
Classification:  35L,  34G,  65J,  65N
@article{1050266691,
     author = {Ashyralyev, A. and Sobolevskii, P. E.},
     title = {A note on the difference schemes for hyperbolic equations},
     journal = {Abstr. Appl. Anal.},
     volume = {6},
     number = {1},
     year = {2001},
     pages = { 63-70},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050266691}
}
Ashyralyev, A.; Sobolevskii, P. E. A note on the difference schemes for hyperbolic equations. Abstr. Appl. Anal., Tome 6 (2001) no. 1, pp.  63-70. http://gdmltest.u-ga.fr/item/1050266691/