Coercive solvability of the nonlocal boundary value problem for parabolic differential equations
Ashyralyev, A. ; Hanalyev, A. ; Sobolevskii, P. E.
Abstr. Appl. Anal., Tome 6 (2001) no. 1, p. 53-61 / Harvested from Project Euclid
The nonlocal boundary value problem, $v'(t)+ Av(t)= f(t)(0\leq t\leq 1),v(0)= v(\lambda)+\mu(0 < \lambda\leq 1)$ , in an arbitrary Banach space $E$ with the strongly positive operator $A$ , is considered. The coercive stability estimates in Hölder norms for the solution of this problem are proved. The exact Schauder’s estimates in Hölder norms of solutions of the boundary value problem on the range $\{0\leq t\leq 1,x\in\mathbb{R}^n\}$ for $2m$ -order multidimensional parabolic equations are obtaine.
Publié le : 2001-05-14
Classification:  65N,  47D,  34B
@article{1050266658,
     author = {Ashyralyev, A. and Hanalyev, A. and Sobolevskii, P. E.},
     title = {Coercive solvability of the nonlocal boundary value
 problem for parabolic differential equations},
     journal = {Abstr. Appl. Anal.},
     volume = {6},
     number = {1},
     year = {2001},
     pages = { 53-61},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1050266658}
}
Ashyralyev, A.; Hanalyev, A.; Sobolevskii, P. E. Coercive solvability of the nonlocal boundary value
 problem for parabolic differential equations. Abstr. Appl. Anal., Tome 6 (2001) no. 1, pp.  53-61. http://gdmltest.u-ga.fr/item/1050266658/