Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale
Davis, John M. ; Henderson, Johnny ; Prasad, K. Rajendra ; Yin, William
Abstr. Appl. Anal., Tome 5 (2000) no. 1, p. 91-99 / Harvested from Project Euclid
We consider the nonlinear second order conjugate eigenvalue problem on a time scale: $y^{\Delta\Delta}(t)+\lambda a(t)f(y(\sigma(t)))= 0,t\in[0,1],y(0)= 0 = y(\sigma(1))$ . Values of the parameter $\lambda$ (eigenvalues) are determined for which this problem has a positive solution. The methods used here extend recent results by allowing for a broader class of functions for $a(t)$ .
Publié le : 2000-05-14
Classification:  34B15,  34G99,  39A12,  39A99
@article{1049999284,
     author = {Davis, John M. and Henderson, Johnny and Prasad, K. Rajendra and Yin, William},
     title = {Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale},
     journal = {Abstr. Appl. Anal.},
     volume = {5},
     number = {1},
     year = {2000},
     pages = { 91-99},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049999284}
}
Davis, John M.; Henderson, Johnny; Prasad, K. Rajendra; Yin, William. Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale. Abstr. Appl. Anal., Tome 5 (2000) no. 1, pp.  91-99. http://gdmltest.u-ga.fr/item/1049999284/