Homoclinic solutions for linear and linearizable ordinary differential equations
Avramescu, Cezar ; Vladimirescu, Cristian
Abstr. Appl. Anal., Tome 5 (2000) no. 1, p. 65-83 / Harvested from Project Euclid
Using functional arguments, some existence results for the infinite boundary value problem $\dot{x}= F(t,x),x(-\infty)= x(+\infty)$ are given. A solution of this problem is frequently called, from Poincaré, homoclinic.
Publié le : 2000-05-14
Classification:  34B05,  34B27
@article{1049999282,
     author = {Avramescu, Cezar and Vladimirescu, Cristian},
     title = {Homoclinic solutions for linear and linearizable ordinary differential equations},
     journal = {Abstr. Appl. Anal.},
     volume = {5},
     number = {1},
     year = {2000},
     pages = { 65-83},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049999282}
}
Avramescu, Cezar; Vladimirescu, Cristian. Homoclinic solutions for linear and linearizable ordinary differential equations. Abstr. Appl. Anal., Tome 5 (2000) no. 1, pp.  65-83. http://gdmltest.u-ga.fr/item/1049999282/