Time averaging for random nonlinear abstract parabolic equations
Bruno, G. ; Pankov, A. ; Pankova, T.
Abstr. Appl. Anal., Tome 5 (2000) no. 1, p. 1-11 / Harvested from Project Euclid
On the basis of $G$ -convergence we prove an averaging result for nonlinear abstract parabolic equations, the operator coefficient of which is a stationary stochastic process.
Publié le : 2000-05-14
Classification:  35K90,  35B27,  60H25
@article{1049999239,
     author = {Bruno, G. and Pankov, A. and Pankova, T.},
     title = {Time averaging for random nonlinear abstract parabolic equations},
     journal = {Abstr. Appl. Anal.},
     volume = {5},
     number = {1},
     year = {2000},
     pages = { 1-11},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049999239}
}
Bruno, G.; Pankov, A.; Pankova, T. Time averaging for random nonlinear abstract parabolic equations. Abstr. Appl. Anal., Tome 5 (2000) no. 1, pp.  1-11. http://gdmltest.u-ga.fr/item/1049999239/