Concerning a proof of $\aleph_{\alpha+1}\leq 2^{\aleph_\alpha}$ without axiom of choice
Vopěnka, Petr
Commentationes Mathematicae Universitatis Carolinae, Tome 006 (1965), p. 111-113 / Harvested from Czech Digital Mathematics Library
Publié le : 1965-01-01
Classification:  04-30
@article{104999,
     author = {Petr Vop\v enka},
     title = {Concerning a proof of $\aleph\_{\alpha+1}\leq 2^{\aleph\_\alpha}$ without axiom of choice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     volume = {006},
     year = {1965},
     pages = {111-113},
     zbl = {0199.01701},
     mrnumber = {0174484},
     language = {en},
     url = {http://dml.mathdoc.fr/item/104999}
}
Vopěnka, Petr. Concerning a proof of $\aleph_{\alpha+1}\leq 2^{\aleph_\alpha}$ without axiom of choice. Commentationes Mathematicae Universitatis Carolinae, Tome 006 (1965) pp. 111-113. http://gdmltest.u-ga.fr/item/104999/

K. Gödel The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Annals of Math. Studies 3, Princeton 1940. (1940) | MR 0024870

A. Lévy A generalization of Gödel's notion of constructibility, The Journ. of Symb. Log. 25 (1960), No 2. (1960) | MR 0142468 | Zbl 0119.25204