$A$-properness and fixed point theorems for dissipative type maps
Lan, K. Q. ; L. Webb, J. R.
Abstr. Appl. Anal., Tome 4 (1999) no. 1, p. 83-100 / Harvested from Project Euclid
We obtain new $A$ -properness results for demicontinuous, dissipative type mappings defined only on closed convex subsets of a Banach space $X$ with uniformly convex dual and which satisfy a property called weakly inward. The method relies on a new property of the duality mapping in such spaces. New fixed point results are obtained by utilising a theory of fixed point index.
Publié le : 1999-05-14
Classification:  47H09,  47H06
@article{1049907172,
     author = {Lan, K. Q. and L. Webb, J. R.},
     title = {$A$-properness and fixed point theorems for dissipative type maps},
     journal = {Abstr. Appl. Anal.},
     volume = {4},
     number = {1},
     year = {1999},
     pages = { 83-100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049907172}
}
Lan, K. Q.; L. Webb, J. R. $A$-properness and fixed point theorems for dissipative type maps. Abstr. Appl. Anal., Tome 4 (1999) no. 1, pp.  83-100. http://gdmltest.u-ga.fr/item/1049907172/