The turnpike property for dynamic discrete time zero-sum games
Zaslavski, Alexander J.
Abstr. Appl. Anal., Tome 4 (1999) no. 1, p. 21-48 / Harvested from Project Euclid
We consider a class of dynamic discrete-time two-player zero-sum games. We show that for a generic cost function and each initial state, there exists a pair of overtaking equilibria strategies over an infinite horizon. We also establish that for a generic cost function $f$ , there exists a pair of stationary equilibria strategies $(x_f,y_f)$ such that each pair of “approximate” equilibria strategies spends almost all of its time in a small neighborhood of $(x_f,y_f)$ .
Publié le : 1999-05-14
Classification:  49J99,  58F99,  90D05,  90D50
@article{1049907138,
     author = {Zaslavski, Alexander J.},
     title = {The turnpike property for dynamic discrete time zero-sum games},
     journal = {Abstr. Appl. Anal.},
     volume = {4},
     number = {1},
     year = {1999},
     pages = { 21-48},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049907138}
}
Zaslavski, Alexander J. The turnpike property for dynamic discrete time zero-sum games. Abstr. Appl. Anal., Tome 4 (1999) no. 1, pp.  21-48. http://gdmltest.u-ga.fr/item/1049907138/