Multiple solutions for a problem with resonance involving the $p$-Laplacian
Alves, C. O. ; Carrião, P. C. ; Miyagaki, O. H.
Abstr. Appl. Anal., Tome 3 (1998) no. 1-2, p. 191-201 / Harvested from Project Euclid
In this paper we will investigate the existence of multiple solutions for the problem $-\Delta_pu + g(x,u) =\lambda_1h(x)|u|^{p-2}u,\mathrm{in}\Omega,u\in H_0^{1,p}(\Omega)(P)$ where $\Delta_{p}u =\mathrm{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$ -Laplacian operator, $\Omega\subseteq\mathbb{R}^N$ is a bounded domain with smooth boundary, $h$ and $g$ are bounded functions, $N\geq 1$ and $1 < p < \infty$ . Using the Mountain Pass Theorem and the Ekeland Variational Principle, we will show the existence of at least three solutions for (P).
Publié le : 1998-05-14
Classification:  Radial solutions,  Critical Sobolev exponents,  Palais-Smale condition,  Mountain Pass Theorem,  35A05,  35A15,  35J20
@article{1049832688,
     author = {Alves, C. O. and Carri\~ao, P. C. and Miyagaki, O. H.},
     title = {Multiple solutions for a problem with resonance involving the
$p$-Laplacian},
     journal = {Abstr. Appl. Anal.},
     volume = {3},
     number = {1-2},
     year = {1998},
     pages = { 191-201},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049832688}
}
Alves, C. O.; Carrião, P. C.; Miyagaki, O. H. Multiple solutions for a problem with resonance involving the
$p$-Laplacian. Abstr. Appl. Anal., Tome 3 (1998) no. 1-2, pp.  191-201. http://gdmltest.u-ga.fr/item/1049832688/