Regularized functional calculi, semigroups, and cosine functions for pseudodifferential operators
Delaubenfels, Ralph ; Lei, Yansong
Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, p. 121-136 / Harvested from Project Euclid
Let $iA_j(1\leq j\leq n)$ be generators of commuting bounded strongly continuous groups, $A\equiv(A_1,A_2,\ldots,A_n)$ . We show that, when $f$ has sufficiently many polynomially bounded derivatives, then there exist $k,r > 0$ such that $f(A)$ has a $(1+|A|^2)^-r$ -regularized $BC^{k}(f(\mathbf{R}^n))$ functional calculus. This immediately produces regularized semigroups and cosine functions with an explicit representation; in particular, when $f(\mathbf{R}^n)\subseteq\mathbf{R}$ , then, for appropriate $k,r$ , $t\mapsto(1-it)^{-k}e^{-itf(A)}(1+|A|^2)^{-r}$ is a Fourier-Stieltjes transform, and when $f(\mathbf{R}^n)\subseteq[0,\infty)$ , then $t\mapsto(1+t)^{-k}e^{-tf(A)}(1+|A|^2)^{-r}$ is a Laplace-Stieltjes transform. With $A\equiv i(D_1,\ldots,D_n),f(A)$ is a pseudodifferential operator on $L^{p}(\mathbf{R}^n) (1\leq p < \infty)$ or $BUC(\mathbf{R}^n)$ .
Publié le : 1997-05-14
Classification:  Regularized functional calculi,  semigroups,  cosine functions,  pseudodifferential operators,  47A60,  47D03,  47D06,  47D09,  47F05
@article{1049737246,
     author = {Delaubenfels, Ralph and Lei, Yansong},
     title = {Regularized functional calculi, semigroups, and cosine functions
for pseudodifferential operators},
     journal = {Abstr. Appl. Anal.},
     volume = {2},
     number = {1-2},
     year = {1997},
     pages = { 121-136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049737246}
}
Delaubenfels, Ralph; Lei, Yansong. Regularized functional calculi, semigroups, and cosine functions
for pseudodifferential operators. Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, pp.  121-136. http://gdmltest.u-ga.fr/item/1049737246/