A proximal point method for nonsmooth convex optimization problems in Banach spaces
Alber, Y. I. ; Burachik, R. S. ; Iusem, A. N.
Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, p. 97-120 / Harvested from Project Euclid
In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the dual Banach space, namely its modulus of convexity. We apply a new technique which includes Banach space geometry, estimates of duality mappings, nonstandard Lyapunov functionals and generalized projection operators in Banach spaces.
Publié le : 1997-05-14
Classification:  Proximal point algorithm,  Banach spaces,  duality mappings,  nonsmooth and convex functionals,  subdifferentials,  moduli of convexity and smoothness of Banach spaces,  generalized projection operators,  Lyapunov functionals,  convergence,  stability,  estimates of convergence rate,  90C25,  49D45,  49D37
@article{1049737245,
     author = {Alber, Y. I. and Burachik, R. S. and Iusem, A. N.},
     title = {A proximal point method for nonsmooth convex optimization
problems in Banach spaces},
     journal = {Abstr. Appl. Anal.},
     volume = {2},
     number = {1-2},
     year = {1997},
     pages = { 97-120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049737245}
}
Alber, Y. I.; Burachik, R. S.; Iusem, A. N. A proximal point method for nonsmooth convex optimization
problems in Banach spaces. Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, pp.  97-120. http://gdmltest.u-ga.fr/item/1049737245/