The topological degree method for equations of the Navier-Stokes type
Dmitrienko, V. T. ; Zvyagin, V. G.
Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, p. 1-45 / Harvested from Project Euclid
We obtain results of existence of weak solutions in the Hopf sense of the initial-boundary value problem for the generalized Navier-Stokes equations containing perturbations of retarded type. The degree theory for maps $A - g$ , where $A$ is invertible and $g$ is $\mathcal{A}$ -condensing, is used.
Publié le : 1997-05-14
Classification:  Weak solutions,  Navier-Stokes equations,  a priori estimates,  degree theory,  $\mathcal{A}$-condensing perturbations,  47H17
@article{1049737241,
     author = {Dmitrienko, V. T. and Zvyagin, V. G.},
     title = {The topological degree method for equations of the Navier-Stokes type},
     journal = {Abstr. Appl. Anal.},
     volume = {2},
     number = {1-2},
     year = {1997},
     pages = { 1-45},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049737241}
}
Dmitrienko, V. T.; Zvyagin, V. G. The topological degree method for equations of the Navier-Stokes type. Abstr. Appl. Anal., Tome 2 (1997) no. 1-2, pp.  1-45. http://gdmltest.u-ga.fr/item/1049737241/