@article{104973, author = {Ji\v r\'\i\ Van\'\i \v cek}, title = {On the characterization of Banach spaces with the strong Kirtzbraun-Valentine property}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {005}, year = {1964}, pages = {173-181}, mrnumber = {0184071}, language = {en}, url = {http://dml.mathdoc.fr/item/104973} }
Vaníček, Jiří. On the characterization of Banach spaces with the strong Kirtzbraun-Valentine property. Commentationes Mathematicae Universitatis Carolinae, Tome 005 (1964) pp. 173-181. http://gdmltest.u-ga.fr/item/104973/
Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. of Math. 6, 1956, p. 405-439. (1956) | MR 0084762 | Zbl 0074.17802
Theory of functions of real variables, Monogr. Math. Warsaw 1951 (Polish). (1951)
Normed linear spaces, Springer, Berlin 1958. (1958) | MR 0094675 | Zbl 0082.10603
Ueber die zusammenziehende und Lipschitzsche Transformationen, Fund. Math. 22, 1934, p. 77-108. (1934)
Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), p. 837-842. (1934) | MR 1562984
On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Soc. 49, No. 2, 1934, p. 100-108. (1934) | MR 0008251
A Lipschitz condition preserving extension for a vector function, Amer. J. of Math. 67, 1945, p. 83-93. (1945) | MR 0011702 | Zbl 0061.37507