Flow invariance for perturbed nonlinear evolution equations
Bothe, Dieter
Abstr. Appl. Anal., Tome 1 (1996) no. 1, p. 417-433 / Harvested from Project Euclid
Let $X$ be a real Banach space, $J = [0,a]\subset\mathbf{R}$ , $A: D(A)\subset X\rightarrow 2^X\backslash\emptyset$ an $m$ -accretive operator and $f:J \times X\rightarrow X$ continuous. In this paper we obtain necessary and sufficient conditions for weak positive invariance (also called viability) of closed sets $K\subset X$ for the evolution system $$u' + Au\ni f(t,u)\mathrm{on}J = [0,a]$$ . More generally, we provide conditions under which this evolution system has mild solutions satisfying time-dependent constraints $u(t)\in K(t)$ on $J$ . This result is then applied to obtain global solutions of reaction-diffusion systems with nonlinear diffusion, e.g. of type $$u_t =\Delta\Phi(u) + g(u)\mathrm{in}(0,\infty)\times\Omega,\Phi(u(t,\cdot))|_{\partial\Omega} = 0,u(0,\cdot) = u_0$$ under certain assumptions on the set $\Omega\subset\mathbf{R}^n$ the function $\Phi(u_1,\ldots,u_m)=(\varphi_1(u_1),\ldots,\varphi_m (u_m))$ and $g: \mathbf{R}^{m}_{+}\to\mathbf{R}^m$ .
Publié le : 1996-05-14
Classification:  Nonlinear evolution equation,  time-dependent constraints,  viability,  reaction-diffusion system,  global existence,  34G20,  35K57
@article{1049726084,
     author = {Bothe, Dieter},
     title = {Flow invariance for perturbed nonlinear evolution equations},
     journal = {Abstr. Appl. Anal.},
     volume = {1},
     number = {1},
     year = {1996},
     pages = { 417-433},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049726084}
}
Bothe, Dieter. Flow invariance for perturbed nonlinear evolution equations. Abstr. Appl. Anal., Tome 1 (1996) no. 1, pp.  417-433. http://gdmltest.u-ga.fr/item/1049726084/