On quasilinear elliptic equations in $\mathbb{R}^N$
Alves, C. O. ; Concalves, J. V. ; Maia, L. A.
Abstr. Appl. Anal., Tome 1 (1996) no. 1, p. 407-415 / Harvested from Project Euclid
In this note we give a result for the operator $p$ -Laplacian complementing a theorem by Brézis and Kamin concerning a necessary and sufficient condition for the equation $-\Delta u = h(x) u^{q}$ in $\mathbb{R}^N$ , where $0 < q < 1$ , to have a bounded positive solution. While Brézis and Kamin use the method of sub and super solutions, we employ variational arguments for the existence of solutions.
Publié le : 1996-05-14
Classification:  Quasilinear elliptic equation,  $p$-Laplacian,  variational method,  35J20,  35J25
@article{1049726083,
     author = {Alves, C. O. and Concalves, J. V. and Maia, L. A.},
     title = {On quasilinear elliptic equations in $\mathbb{R}^N$},
     journal = {Abstr. Appl. Anal.},
     volume = {1},
     number = {1},
     year = {1996},
     pages = { 407-415},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049726083}
}
Alves, C. O.; Concalves, J. V.; Maia, L. A. On quasilinear elliptic equations in $\mathbb{R}^N$. Abstr. Appl. Anal., Tome 1 (1996) no. 1, pp.  407-415. http://gdmltest.u-ga.fr/item/1049726083/