Global solutions of semilinear heat equations in Hilbert spaces
Iancu, G. Mihai ; Wong, M. W.
Abstr. Appl. Anal., Tome 1 (1996) no. 1, p. 263-276 / Harvested from Project Euclid
The existence, uniqueness, regularity and asymptotic behavior of global solutions of semilinear heat equations in Hilbert spaces are studied by developing new results in the theory of one-parameter strongly continuous semigroups of bounded linear operators. Applications to special semilinear heat equations in $L^2(\mathbb{R}^n)$ governed by pseudo-differential operators are given.
Publié le : 1996-05-14
Classification:  Hilbert space,  semilinear heat equations,  existence,  uniqueness,  regularity,  asymptotic behavior,  47G30
@article{1049726051,
     author = {Iancu, G. Mihai and Wong, M. W.},
     title = {Global solutions of semilinear heat equations in Hilbert spaces},
     journal = {Abstr. Appl. Anal.},
     volume = {1},
     number = {1},
     year = {1996},
     pages = { 263-276},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049726051}
}
Iancu, G. Mihai; Wong, M. W. Global solutions of semilinear heat equations in Hilbert spaces. Abstr. Appl. Anal., Tome 1 (1996) no. 1, pp.  263-276. http://gdmltest.u-ga.fr/item/1049726051/