An Ambrosetti-Prodi-type problem for an elliptic system of equations via monotone iteration method and Leray-Schauder degree theory
Filho, D. C. de Morais
Abstr. Appl. Anal., Tome 1 (1996) no. 1, p. 137-152 / Harvested from Project Euclid
In this paper we employ the Monotone Iteration Method and the Leray-Schauder Degree Theory to study an $\mathbb{R}^2$ -parametrized system of elliptic equations. We obtain a curve dividing the plane into two regions. Depending on which region the parameter is, the system will or will not have solutions. This is an Ambrosetti-Prodi-type problem for a system of equations.
Publié le : 1996-05-14
Classification:  Ambrosetti-Prodi problem,  Monotone iteration method,  Leray-Schauder degree theory,  35J55
@article{1049726024,
     author = {Filho, D.  C. de Morais},
     title = {An Ambrosetti-Prodi-type problem for an elliptic system of
equations via monotone iteration method and Leray-Schauder degree theory},
     journal = {Abstr. Appl. Anal.},
     volume = {1},
     number = {1},
     year = {1996},
     pages = { 137-152},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049726024}
}
Filho, D.  C. de Morais. An Ambrosetti-Prodi-type problem for an elliptic system of
equations via monotone iteration method and Leray-Schauder degree theory. Abstr. Appl. Anal., Tome 1 (1996) no. 1, pp.  137-152. http://gdmltest.u-ga.fr/item/1049726024/