Complex geometrical optics solutions for Lipschitz conductivities
Päivärinta, Lassi ; Panchenko, Alexander ; Uhlmann, Gunther
Rev. Mat. Iberoamericana, Tome 19 (2003) no. 2, p. 57-72 / Harvested from Project Euclid
We prove the existence of complex geometrical optics solutions for Lipschitz conductivities. Moreover we show that, in dimensions $n\ge 3$ that one can uniquely recover a $W^{3/2, \infty}$ conductivity from its associated Dirichlet-to-Neumann map or voltage to current map.
Publié le : 2003-03-15
Classification:  Electrical Impedance Tomography,  Complex Geometrical Optics,  Lipschitz Conductivities,  35R30,  35Q60
@article{1049123080,
     author = {P\"aiv\"arinta, Lassi and Panchenko, Alexander and Uhlmann, Gunther},
     title = {Complex geometrical optics solutions for Lipschitz
 conductivities},
     journal = {Rev. Mat. Iberoamericana},
     volume = {19},
     number = {2},
     year = {2003},
     pages = { 57-72},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1049123080}
}
Päivärinta, Lassi; Panchenko, Alexander; Uhlmann, Gunther. Complex geometrical optics solutions for Lipschitz
 conductivities. Rev. Mat. Iberoamericana, Tome 19 (2003) no. 2, pp.  57-72. http://gdmltest.u-ga.fr/item/1049123080/