The Kobayashi metric of a complex ellipsoid in {${\bf C}\sp 2$}
Blank, Brian E. ; Fan, Da Shan ; Klein, David ; Krantz, Steven G. ; Ma, Daowei ; Pang, Myung-Yull
Experiment. Math., Tome 1 (1992) no. 4, p. 47-55 / Harvested from Project Euclid
The infinitesimal Kobayashi metric of an ellipsoid of the form $$ E_m=\{(z_1,z_2)\in \C^2:|z_1|^2+|z_2|^{2m}<1\} $$ is calculated explicitly, modulo a parameter that is determined by solving a transcendental equation. Using this result, we show that the metric is $C^1$ on the tangent bundle away from the zero section. We also describe software that will calculate, using a Monte Carlo method, the infinitesimal Kobayashi metric on a domain of the form $$ \Omega_\rho=\{(z_1,z_2)\in\C^2:\rho(z_1,z_2)<0\}, $$ where $\rho$ is a real-valued polynomial. We compare results of computer calculations with those obtained from the explicit formula for the Kobayashi metric.
Publié le : 1992-05-14
Classification:  32H15
@article{1048709115,
     author = {Blank, Brian E. and Fan, Da Shan and Klein, David and Krantz, Steven G. and Ma, Daowei and Pang, Myung-Yull},
     title = {The Kobayashi metric of a complex ellipsoid in {${\bf C}\sp 2$}},
     journal = {Experiment. Math.},
     volume = {1},
     number = {4},
     year = {1992},
     pages = { 47-55},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1048709115}
}
Blank, Brian E.; Fan, Da Shan; Klein, David; Krantz, Steven G.; Ma, Daowei; Pang, Myung-Yull. The Kobayashi metric of a complex ellipsoid in {${\bf C}\sp 2$}. Experiment. Math., Tome 1 (1992) no. 4, pp.  47-55. http://gdmltest.u-ga.fr/item/1048709115/