The first exit time of a Brownian motion from an unbounded convex domain
Li, Wenbo V.
Ann. Probab., Tome 31 (2003) no. 1, p. 1078-1096 / Harvested from Project Euclid
Consider the first exit time $\tau_D$ of a $(d+1)$-dimensional Brownian motion from an unbounded open domain $D=\set{ (x, y) \in \R^{d+1} \dvtx y > f(x), x \in \R^d }$ starting at\vspace{0.5pt} $(x_0, f(x_0)+1)\in \R^{d+1}$ for some $x_0 \in \R^d$, where the function $f(x)$ on $\R^d$ is convex and $f(x) \to \infty$ as the Euclidean norm $|x| \to \infty$. Very general estimates for the asymptotics of $\log \pr{\tau_D >t}$ are given by using Gaussian techniques. In particular, for $f(x)=\exp\{ |x|^p\}$, $p >0$, \[ \lim_{t\to\infty} t^{-1} (\log t)^{2/p} \log \pr{\tau_D>t}=-j_\nu^2/2, \] where $\nu=(d-2)/2$ and $j_\nu$ is the smallest positive zero of the Bessel function $J_{\nu}$.
Publié le : 2003-04-14
Classification:  Brownian motion,  Bessel process,  asymptotic tail distribution,  exit probabilities,  Slepian's inequality,  60G40,  60J65
@article{1048516546,
     author = {Li, Wenbo V.},
     title = {The first exit time of a Brownian motion from an unbounded convex domain},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 1078-1096},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1048516546}
}
Li, Wenbo V. The first exit time of a Brownian motion from an unbounded convex domain. Ann. Probab., Tome 31 (2003) no. 1, pp.  1078-1096. http://gdmltest.u-ga.fr/item/1048516546/