The $\bm{L}_\mathbf{1}$-norm density estimator process
Giné, Evarist ; Mason, David M. ; Zaitsev, Andrei Yu.
Ann. Probab., Tome 31 (2003) no. 1, p. 719-768 / Harvested from Project Euclid
The notion of an $L_{1}$-norm density estimator process indexed by a class of kernels is introduced. Then a functional central limit theorem and a Glivenko--Cantelli theorem are established for this process. While assembling the necessary machinery to prove these results, a body of Poissonization techniques and restricted chaining methods is developed, which is useful for studying weak convergence of general processes indexed by a class of functions. None of the theorems imposes any condition at all on the underlying Lebesgue density $f$. Also, somewhat unexpectedly, the distribution of the limiting Gaussian process does not depend on $f$.
Publié le : 2003-04-14
Classification:  Kernel density function estimator,  $L_{1}$-norm,  central limit theorem,  weak convergeance,  Poissonization,  entropy,  60F05,  60F15,  60F17,  62G07
@article{1048516534,
     author = {Gin\'e, Evarist and Mason, David M. and Zaitsev, Andrei Yu.},
     title = {The $\bm{L}\_\mathbf{1}$-norm density estimator process},
     journal = {Ann. Probab.},
     volume = {31},
     number = {1},
     year = {2003},
     pages = { 719-768},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1048516534}
}
Giné, Evarist; Mason, David M.; Zaitsev, Andrei Yu. The $\bm{L}_\mathbf{1}$-norm density estimator process. Ann. Probab., Tome 31 (2003) no. 1, pp.  719-768. http://gdmltest.u-ga.fr/item/1048516534/