Sur la courbe modulaire {$X\sb {ßize\text{ndép}}(11)$}
Halberstadt, Emmanuel
Experiment. Math., Tome 7 (1998) no. 4, p. 163-174 / Harvested from Project Euclid
The modular curve $\Xnd{11}$ (or $X_{\mathrm{nonsplit}}(11)$) classifies the elliptic curves $E$ such that Galois acts on the group of 11-torsion points of $E$ through the normaliser of a non-split Cartan subgroup. It is known that this curve has genus 1. We give here a parametrisation of this curve by a certain elliptic curve over $\Q$ with conductor 121. As an application, we give explicit examples of couples of elliptic curves over $\Q$ nonisogenous over $\Q$ but giving symplectically isomorphic modulo 11 Galois representations.
Publié le : 1998-05-14
Classification:  11G05,  11G18
@article{1048515664,
     author = {Halberstadt, Emmanuel},
     title = {Sur la courbe modulaire {$X\sb {\ss ize\text{nd\'ep}}(11)$}},
     journal = {Experiment. Math.},
     volume = {7},
     number = {4},
     year = {1998},
     pages = { 163-174},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1048515664}
}
Halberstadt, Emmanuel. Sur la courbe modulaire {$X\sb {ßize\text{ndép}}(11)$}. Experiment. Math., Tome 7 (1998) no. 4, pp.  163-174. http://gdmltest.u-ga.fr/item/1048515664/