Loading [MathJax]/extensions/MathZoom.js
Bounds for the density of abundant integers
Deléglise, Marc
Experiment. Math., Tome 7 (1998) no. 4, p. 137-143 / Harvested from Project Euclid
We say that an integer $n$ is abundant if the sum of the divisors of $n$ is at least $2n$. It has been known [wall71] that the set of abundant numbers has a natural density $A(2)$ and that $0.244 < A(2) < 0.291$. We give the sharper bounds $0.2474 < A(2) < 0.2480$.
Publié le : 1998-05-14
Classification:  11N60
@article{1048515661,
     author = {Del\'eglise, Marc},
     title = {Bounds for the density of abundant integers},
     journal = {Experiment. Math.},
     volume = {7},
     number = {4},
     year = {1998},
     pages = { 137-143},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1048515661}
}
Deléglise, Marc. Bounds for the density of abundant integers. Experiment. Math., Tome 7 (1998) no. 4, pp.  137-143. http://gdmltest.u-ga.fr/item/1048515661/