All geometries of the Mathieu group {$M\sb {11}$} based on maximal subgroups
Buekenhout, Francis ; Dehon, Michel ; Leemans, Dimitri
Experiment. Math., Tome 5 (1996) no. 4, p. 101-110 / Harvested from Project Euclid
Using a Cayley program, we get all firm, residually connected geometries whose rank-two residues satisfy the intersection property, on which $M_{11}$ acts flag-transitively, and in which the stabilizer of each element is a maximal subgroup of $M_{11}$.
Publié le : 1996-05-14
Classification:  51E24,  51-04
@article{1047565641,
     author = {Buekenhout, Francis and Dehon, Michel and Leemans, Dimitri},
     title = {All geometries of the Mathieu group {$M\sb {11}$} based on maximal subgroups},
     journal = {Experiment. Math.},
     volume = {5},
     number = {4},
     year = {1996},
     pages = { 101-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1047565641}
}
Buekenhout, Francis; Dehon, Michel; Leemans, Dimitri. All geometries of the Mathieu group {$M\sb {11}$} based on maximal subgroups. Experiment. Math., Tome 5 (1996) no. 4, pp.  101-110. http://gdmltest.u-ga.fr/item/1047565641/